MakeItFrom.com
Menu (ESC)

Nickel 601 vs. EN AC-45100 Aluminum

Nickel 601 belongs to the nickel alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 601 and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 10 to 38
1.0 to 2.8
Fatigue Strength, MPa 220 to 380
82 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 660 to 890
300 to 360
Tensile Strength: Yield (Proof), MPa 290 to 800
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1360
550
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
95

Otherwise Unclassified Properties

Base Metal Price, % relative 49
10
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.9
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 280
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
290 to 710
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22 to 30
30 to 35
Strength to Weight: Bending, points 20 to 25
35 to 39
Thermal Diffusivity, mm2/s 2.8
54
Thermal Shock Resistance, points 17 to 23
14 to 16

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
88 to 92.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 1.0
2.6 to 3.6
Iron (Fe), % 7.7 to 20
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 58 to 63
0 to 0.1
Silicon (Si), % 0 to 0.5
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15