MakeItFrom.com
Menu (ESC)

Nickel 601 vs. Grade 34 Titanium

Nickel 601 belongs to the nickel alloys classification, while grade 34 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 601 and the bottom bar is grade 34 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 10 to 38
20
Fatigue Strength, MPa 220 to 380
310
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 440 to 530
320
Tensile Strength: Ultimate (UTS), MPa 660 to 890
510
Tensile Strength: Yield (Proof), MPa 290 to 800
450

Thermal Properties

Latent Heat of Fusion, J/g 320
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1360
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 11
21
Thermal Expansion, µm/m-K 14
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 49
55
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 8.0
33
Embodied Energy, MJ/kg 110
530
Embodied Water, L/kg 280
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
100
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 22 to 30
31
Strength to Weight: Bending, points 20 to 25
31
Thermal Diffusivity, mm2/s 2.8
8.4
Thermal Shock Resistance, points 17 to 23
39

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 21 to 25
0.1 to 0.2
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 7.7 to 20
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.010 to 0.020
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98 to 99.52
Residuals, % 0
0 to 0.4