MakeItFrom.com
Menu (ESC)

Nickel 617 vs. 5019 Aluminum

Nickel 617 belongs to the nickel alloys classification, while 5019 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 617 and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 40
2.2 to 18
Fatigue Strength, MPa 220
100 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 510
170 to 210
Tensile Strength: Ultimate (UTS), MPa 740
280 to 360
Tensile Strength: Yield (Proof), MPa 280
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
98

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 10
9.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 350
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 190
110 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 24
29 to 38
Strength to Weight: Bending, points 21
35 to 42
Thermal Diffusivity, mm2/s 3.5
52
Thermal Shock Resistance, points 21
13 to 16

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
91.5 to 95.3
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0 to 0.2
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 0 to 3.0
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0 to 1.0
0.1 to 0.6
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15