MakeItFrom.com
Menu (ESC)

Nickel 617 vs. 6013 Aluminum

Nickel 617 belongs to the nickel alloys classification, while 6013 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 617 and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 40
3.4 to 22
Fatigue Strength, MPa 220
98 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 510
190 to 240
Tensile Strength: Ultimate (UTS), MPa 740
310 to 410
Tensile Strength: Yield (Proof), MPa 280
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1330
580
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 350
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 190
200 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 24
31 to 41
Strength to Weight: Bending, points 21
37 to 44
Thermal Diffusivity, mm2/s 3.5
60
Thermal Shock Resistance, points 21
14 to 18

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
94.8 to 97.8
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0 to 0.1
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
0.6 to 1.1
Iron (Fe), % 0 to 3.0
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0.2 to 0.8
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0
Silicon (Si), % 0 to 1.0
0.6 to 1.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15