MakeItFrom.com
Menu (ESC)

Nickel 617 vs. 6106 Aluminum

Nickel 617 belongs to the nickel alloys classification, while 6106 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 617 and the bottom bar is 6106 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 40
9.1
Fatigue Strength, MPa 220
88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 510
170
Tensile Strength: Ultimate (UTS), MPa 740
290
Tensile Strength: Yield (Proof), MPa 280
220

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1380
660
Melting Onset (Solidus), °C 1330
610
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
190
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
49
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
160

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 350
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
24
Resilience: Unit (Modulus of Resilience), kJ/m3 190
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 24
29
Strength to Weight: Bending, points 21
35
Thermal Diffusivity, mm2/s 3.5
78
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
97.2 to 99.3
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0 to 0.2
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
0 to 0.25
Iron (Fe), % 0 to 3.0
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.0
0.050 to 0.2
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15