MakeItFrom.com
Menu (ESC)

Nickel 617 vs. QE22A Magnesium

Nickel 617 belongs to the nickel alloys classification, while QE22A magnesium belongs to the magnesium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 617 and the bottom bar is QE22A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
44
Elongation at Break, % 40
2.4
Fatigue Strength, MPa 220
110
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 80
17
Shear Strength, MPa 510
150
Tensile Strength: Ultimate (UTS), MPa 740
250
Tensile Strength: Yield (Proof), MPa 280
190

Thermal Properties

Latent Heat of Fusion, J/g 330
340
Maximum Temperature: Mechanical, °C 1010
250
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
570
Specific Heat Capacity, J/kg-K 450
970
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 12
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
120

Otherwise Unclassified Properties

Density, g/cm3 8.5
2.0
Embodied Carbon, kg CO2/kg material 10
27
Embodied Energy, MJ/kg 140
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
5.5
Resilience: Unit (Modulus of Resilience), kJ/m3 190
400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
60
Strength to Weight: Axial, points 24
36
Strength to Weight: Bending, points 21
46
Thermal Diffusivity, mm2/s 3.5
59
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 0 to 3.0
0
Magnesium (Mg), % 0
93.1 to 95.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0 to 0.010
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
2.0 to 3.0
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
1.8 to 2.5
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3