MakeItFrom.com
Menu (ESC)

Nickel 617 vs. Sintered 6061 Aluminum

Nickel 617 belongs to the nickel alloys classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 617 and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 40
0.5 to 6.0
Fatigue Strength, MPa 220
32 to 62
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
25
Tensile Strength: Ultimate (UTS), MPa 740
83 to 210
Tensile Strength: Yield (Proof), MPa 280
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
610
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
200
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
52
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
170

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 350
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 190
28 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 24
8.6 to 21
Strength to Weight: Bending, points 21
16 to 29
Thermal Diffusivity, mm2/s 3.5
81
Thermal Shock Resistance, points 21
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
96 to 99.4
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
0 to 0.5
Iron (Fe), % 0 to 3.0
0
Magnesium (Mg), % 0
0.4 to 1.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 1.5