MakeItFrom.com
Menu (ESC)

Nickel 617 vs. C12900 Copper

Nickel 617 belongs to the nickel alloys classification, while C12900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 617 and the bottom bar is C12900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 40
2.8 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 510
150 to 210
Tensile Strength: Ultimate (UTS), MPa 740
220 to 420
Tensile Strength: Yield (Proof), MPa 280
75 to 380

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1380
1080
Melting Onset (Solidus), °C 1330
1030
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 13
380
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
98
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
98

Otherwise Unclassified Properties

Base Metal Price, % relative 75
32
Density, g/cm3 8.5
9.0
Embodied Carbon, kg CO2/kg material 10
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
11 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 190
24 to 640
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 24
6.8 to 13
Strength to Weight: Bending, points 21
9.1 to 14
Thermal Diffusivity, mm2/s 3.5
110
Thermal Shock Resistance, points 21
7.8 to 15

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0
Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
99.88 to 100
Iron (Fe), % 0 to 3.0
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0 to 0.050
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0 to 0.054
Sulfur (S), % 0 to 0.015
0
Tellurium (Te), % 0
0 to 0.025