MakeItFrom.com
Menu (ESC)

Nickel 617 vs. C42200 Brass

Nickel 617 belongs to the nickel alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 617 and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 40
2.0 to 46
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
42
Shear Strength, MPa 510
210 to 350
Tensile Strength: Ultimate (UTS), MPa 740
300 to 610
Tensile Strength: Yield (Proof), MPa 280
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1380
1040
Melting Onset (Solidus), °C 1330
1020
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
32

Otherwise Unclassified Properties

Base Metal Price, % relative 75
29
Density, g/cm3 8.5
8.6
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 350
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
49 to 1460
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
9.5 to 19
Strength to Weight: Bending, points 21
11 to 18
Thermal Diffusivity, mm2/s 3.5
39
Thermal Shock Resistance, points 21
10 to 21

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
86 to 89
Iron (Fe), % 0 to 3.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0
Phosphorus (P), % 0
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5