MakeItFrom.com
Menu (ESC)

Nickel 617 vs. C49300 Brass

Nickel 617 belongs to the nickel alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 617 and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 40
4.5 to 20
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 80
40
Shear Strength, MPa 510
270 to 290
Tensile Strength: Ultimate (UTS), MPa 740
430 to 520
Tensile Strength: Yield (Proof), MPa 280
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1380
880
Melting Onset (Solidus), °C 1330
840
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 13
88
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 75
26
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 10
3.0
Embodied Energy, MJ/kg 140
50
Embodied Water, L/kg 350
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 190
220 to 800
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
15 to 18
Strength to Weight: Bending, points 21
16 to 18
Thermal Diffusivity, mm2/s 3.5
29
Thermal Shock Resistance, points 21
14 to 18

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
58 to 62
Iron (Fe), % 0 to 3.0
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.030
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0 to 1.5
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.0 to 1.8
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5