MakeItFrom.com
Menu (ESC)

Nickel 617 vs. C82400 Copper

Nickel 617 belongs to the nickel alloys classification, while C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 617 and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 40
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
45
Tensile Strength: Ultimate (UTS), MPa 740
500 to 1030
Tensile Strength: Yield (Proof), MPa 280
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 1010
270
Melting Completion (Liquidus), °C 1380
1000
Melting Onset (Solidus), °C 1330
900
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
26

Otherwise Unclassified Properties

Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 10
8.9
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 350
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 190
270 to 3870
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
16 to 33
Strength to Weight: Bending, points 21
16 to 26
Thermal Diffusivity, mm2/s 3.5
39
Thermal Shock Resistance, points 21
17 to 36

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0 to 0.1
Cobalt (Co), % 10 to 15
0.2 to 0.65
Copper (Cu), % 0 to 0.5
96 to 98.2
Iron (Fe), % 0 to 3.0
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5