MakeItFrom.com
Menu (ESC)

Nickel 617 vs. C96400 Copper-nickel

Nickel 617 belongs to the nickel alloys classification, while C96400 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 617 and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 40
25
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
51
Tensile Strength: Ultimate (UTS), MPa 740
490
Tensile Strength: Yield (Proof), MPa 280
260

Thermal Properties

Latent Heat of Fusion, J/g 330
240
Maximum Temperature: Mechanical, °C 1010
260
Melting Completion (Liquidus), °C 1380
1240
Melting Onset (Solidus), °C 1330
1170
Specific Heat Capacity, J/kg-K 450
400
Thermal Conductivity, W/m-K 13
28
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 75
45
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 10
5.9
Embodied Energy, MJ/kg 140
87
Embodied Water, L/kg 350
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
100
Resilience: Unit (Modulus of Resilience), kJ/m3 190
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 24
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 3.5
7.8
Thermal Shock Resistance, points 21
17

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0 to 0.15
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
62.3 to 71.3
Iron (Fe), % 0 to 3.0
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Residuals, % 0
0 to 0.5