Nickel 617 vs. S17600 Stainless Steel
Nickel 617 belongs to the nickel alloys classification, while S17600 stainless steel belongs to the iron alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is nickel 617 and the bottom bar is S17600 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 210 | |
200 |
Elongation at Break, % | 40 | |
8.6 to 11 |
Fatigue Strength, MPa | 220 | |
300 to 680 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 80 | |
76 |
Shear Strength, MPa | 510 | |
560 to 880 |
Tensile Strength: Ultimate (UTS), MPa | 740 | |
940 to 1490 |
Tensile Strength: Yield (Proof), MPa | 280 | |
580 to 1310 |
Thermal Properties
Latent Heat of Fusion, J/g | 330 | |
290 |
Maximum Temperature: Mechanical, °C | 1010 | |
890 |
Melting Completion (Liquidus), °C | 1380 | |
1430 |
Melting Onset (Solidus), °C | 1330 | |
1390 |
Specific Heat Capacity, J/kg-K | 450 | |
480 |
Thermal Conductivity, W/m-K | 13 | |
15 |
Thermal Expansion, µm/m-K | 12 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.4 | |
2.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 1.5 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 75 | |
13 |
Density, g/cm3 | 8.5 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 10 | |
2.9 |
Embodied Energy, MJ/kg | 140 | |
42 |
Embodied Water, L/kg | 350 | |
130 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 230 | |
70 to 150 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 190 | |
850 to 4390 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 23 | |
25 |
Strength to Weight: Axial, points | 24 | |
34 to 54 |
Strength to Weight: Bending, points | 21 | |
28 to 37 |
Thermal Diffusivity, mm2/s | 3.5 | |
4.1 |
Thermal Shock Resistance, points | 21 | |
31 to 50 |
Alloy Composition
Aluminum (Al), % | 0.8 to 1.5 | |
0 to 0.4 |
Boron (B), % | 0 to 0.0060 | |
0 |
Carbon (C), % | 0.050 to 0.15 | |
0 to 0.080 |
Chromium (Cr), % | 20 to 24 | |
16 to 17.5 |
Cobalt (Co), % | 10 to 15 | |
0 |
Copper (Cu), % | 0 to 0.5 | |
0 |
Iron (Fe), % | 0 to 3.0 | |
71.3 to 77.6 |
Manganese (Mn), % | 0 to 1.0 | |
0 to 1.0 |
Molybdenum (Mo), % | 8.0 to 10 | |
0 |
Nickel (Ni), % | 44.5 to 62 | |
6.0 to 7.5 |
Phosphorus (P), % | 0 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.030 |
Titanium (Ti), % | 0 | |
0.4 to 1.2 |