MakeItFrom.com
Menu (ESC)

Nickel 617 vs. WE54A Magnesium

Nickel 617 belongs to the nickel alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 617 and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
44
Elongation at Break, % 40
4.3 to 5.6
Fatigue Strength, MPa 220
98 to 130
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 80
17
Shear Strength, MPa 510
150 to 170
Tensile Strength: Ultimate (UTS), MPa 740
270 to 300
Tensile Strength: Yield (Proof), MPa 280
180

Thermal Properties

Latent Heat of Fusion, J/g 330
330
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
570
Specific Heat Capacity, J/kg-K 450
960
Thermal Conductivity, W/m-K 13
52
Thermal Expansion, µm/m-K 12
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
47

Otherwise Unclassified Properties

Base Metal Price, % relative 75
34
Density, g/cm3 8.5
1.9
Embodied Carbon, kg CO2/kg material 10
29
Embodied Energy, MJ/kg 140
260
Embodied Water, L/kg 350
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 190
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
62
Strength to Weight: Axial, points 24
39 to 43
Strength to Weight: Bending, points 21
49 to 51
Thermal Diffusivity, mm2/s 3.5
28
Thermal Shock Resistance, points 21
18 to 19

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
0 to 0.030
Iron (Fe), % 0 to 3.0
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
88.7 to 93.4
Manganese (Mn), % 0 to 1.0
0 to 0.030
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0 to 0.0050
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3