MakeItFrom.com
Menu (ESC)

Nickel 625 vs. 1085 Aluminum

Nickel 625 belongs to the nickel alloys classification, while 1085 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 625 and the bottom bar is 1085 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 33 to 34
4.5 to 39
Fatigue Strength, MPa 240 to 320
22 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 530 to 600
48 to 79
Tensile Strength: Ultimate (UTS), MPa 790 to 910
73 to 140
Tensile Strength: Yield (Proof), MPa 320 to 450
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1290
640
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 11
230
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
200

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 14
8.3
Embodied Energy, MJ/kg 190
160
Embodied Water, L/kg 290
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
2.1 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 26 to 29
7.5 to 14
Strength to Weight: Bending, points 22 to 24
14 to 22
Thermal Diffusivity, mm2/s 2.9
94
Thermal Shock Resistance, points 22 to 25
3.3 to 6.1

Alloy Composition

Aluminum (Al), % 0 to 0.4
99.85 to 100
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 5.0
0 to 0.12
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0 to 0.020
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0 to 0.020
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.030
Residuals, % 0
0 to 0.010

Comparable Variants