MakeItFrom.com
Menu (ESC)

Nickel 625 vs. 204.0 Aluminum

Nickel 625 belongs to the nickel alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 625 and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 33 to 34
5.7 to 7.8
Fatigue Strength, MPa 240 to 320
63 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 790 to 910
230 to 340
Tensile Strength: Yield (Proof), MPa 320 to 450
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1290
580
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 80
11
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 14
8.0
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
220 to 350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 26 to 29
21 to 31
Strength to Weight: Bending, points 22 to 24
28 to 36
Thermal Diffusivity, mm2/s 2.9
46
Thermal Shock Resistance, points 22 to 25
12 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.4
93.4 to 95.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 0 to 5.0
0 to 0.35
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 0.050
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.4
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15