MakeItFrom.com
Menu (ESC)

Nickel 625 vs. 7129 Aluminum

Nickel 625 belongs to the nickel alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 625 and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 33 to 34
9.0 to 9.1
Fatigue Strength, MPa 240 to 320
150 to 190
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 530 to 600
250 to 260
Tensile Strength: Ultimate (UTS), MPa 790 to 910
430
Tensile Strength: Yield (Proof), MPa 320 to 450
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1290
510
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.9
Embodied Carbon, kg CO2/kg material 14
8.3
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
1050 to 1090
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 26 to 29
41
Strength to Weight: Bending, points 22 to 24
43 to 44
Thermal Diffusivity, mm2/s 2.9
58
Thermal Shock Resistance, points 22 to 25
19

Alloy Composition

Aluminum (Al), % 0 to 0.4
91 to 94
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0 to 0.1
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 5.0
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15