MakeItFrom.com
Menu (ESC)

Nickel 625 vs. ACI-ASTM CD3MN Steel

Nickel 625 belongs to the nickel alloys classification, while ACI-ASTM CD3MN steel belongs to the iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is ACI-ASTM CD3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 33 to 34
29
Fatigue Strength, MPa 240 to 320
340
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 79
79
Tensile Strength: Ultimate (UTS), MPa 790 to 910
710
Tensile Strength: Yield (Proof), MPa 320 to 450
460

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 980
1060
Melting Completion (Liquidus), °C 1350
1450
Melting Onset (Solidus), °C 1290
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 11
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 80
18
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
3.6
Embodied Energy, MJ/kg 190
50
Embodied Water, L/kg 290
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
180
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26 to 29
25
Strength to Weight: Bending, points 22 to 24
23
Thermal Diffusivity, mm2/s 2.9
4.3
Thermal Shock Resistance, points 22 to 25
20

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 20 to 23
21 to 23.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 0 to 5.0
62.6 to 71.9
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 8.0 to 10
2.5 to 3.5
Nickel (Ni), % 58 to 68.9
4.5 to 6.5
Niobium (Nb), % 3.2 to 4.2
0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.4
0