MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C443.0 Aluminum

Nickel 625 belongs to the nickel alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 625 and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 33 to 34
9.0
Fatigue Strength, MPa 240 to 320
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 530 to 600
130
Tensile Strength: Ultimate (UTS), MPa 790 to 910
230
Tensile Strength: Yield (Proof), MPa 320 to 450
100

Thermal Properties

Latent Heat of Fusion, J/g 330
470
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1290
600
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 14
7.9
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
17
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
70
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 26 to 29
24
Strength to Weight: Bending, points 22 to 24
31
Thermal Diffusivity, mm2/s 2.9
58
Thermal Shock Resistance, points 22 to 25
10

Alloy Composition

Aluminum (Al), % 0 to 0.4
89.6 to 95.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 0 to 5.0
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.35
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 0.5
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25