Nickel 625 vs. EN 1.4477 Stainless Steel
Nickel 625 belongs to the nickel alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is nickel 625 and the bottom bar is EN 1.4477 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
210 |
Elongation at Break, % | 33 to 34 | |
22 to 23 |
Fatigue Strength, MPa | 240 to 320 | |
420 to 490 |
Poisson's Ratio | 0.29 | |
0.27 |
Shear Modulus, GPa | 79 | |
81 |
Shear Strength, MPa | 530 to 600 | |
550 to 580 |
Tensile Strength: Ultimate (UTS), MPa | 790 to 910 | |
880 to 930 |
Tensile Strength: Yield (Proof), MPa | 320 to 450 | |
620 to 730 |
Thermal Properties
Latent Heat of Fusion, J/g | 330 | |
300 |
Maximum Temperature: Mechanical, °C | 980 | |
1100 |
Melting Completion (Liquidus), °C | 1350 | |
1430 |
Melting Onset (Solidus), °C | 1290 | |
1380 |
Specific Heat Capacity, J/kg-K | 440 | |
480 |
Thermal Conductivity, W/m-K | 11 | |
13 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.3 | |
2.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 1.4 | |
2.5 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 80 | |
20 |
Density, g/cm3 | 8.6 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 14 | |
3.7 |
Embodied Energy, MJ/kg | 190 | |
52 |
Embodied Water, L/kg | 290 | |
190 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 220 to 250 | |
180 to 190 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 260 to 490 | |
940 to 1290 |
Stiffness to Weight: Axial, points | 13 | |
15 |
Stiffness to Weight: Bending, points | 23 | |
25 |
Strength to Weight: Axial, points | 26 to 29 | |
31 to 33 |
Strength to Weight: Bending, points | 22 to 24 | |
26 to 27 |
Thermal Diffusivity, mm2/s | 2.9 | |
3.5 |
Thermal Shock Resistance, points | 22 to 25 | |
23 to 25 |
Alloy Composition
Aluminum (Al), % | 0 to 0.4 | |
0 |
Carbon (C), % | 0 to 0.1 | |
0 to 0.030 |
Chromium (Cr), % | 20 to 23 | |
28 to 30 |
Cobalt (Co), % | 0 to 1.0 | |
0 |
Copper (Cu), % | 0 | |
0 to 0.8 |
Iron (Fe), % | 0 to 5.0 | |
56.6 to 63.6 |
Manganese (Mn), % | 0 to 0.5 | |
0.8 to 1.5 |
Molybdenum (Mo), % | 8.0 to 10 | |
1.5 to 2.6 |
Nickel (Ni), % | 58 to 68.9 | |
5.8 to 7.5 |
Niobium (Nb), % | 3.2 to 4.2 | |
0 |
Nitrogen (N), % | 0 | |
0.3 to 0.4 |
Phosphorus (P), % | 0 to 0.015 | |
0 to 0.030 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.5 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.015 |
Titanium (Ti), % | 0 to 0.4 | |
0 |