MakeItFrom.com
Menu (ESC)

Nickel 625 vs. EN 1.4903 Stainless Steel

Nickel 625 belongs to the nickel alloys classification, while EN 1.4903 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is EN 1.4903 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 33 to 34
20 to 21
Fatigue Strength, MPa 240 to 320
320 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
75
Shear Strength, MPa 530 to 600
420
Tensile Strength: Ultimate (UTS), MPa 790 to 910
670 to 680
Tensile Strength: Yield (Proof), MPa 320 to 450
500

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 980
650
Melting Completion (Liquidus), °C 1350
1460
Melting Onset (Solidus), °C 1290
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 11
26
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
4.0

Otherwise Unclassified Properties

Base Metal Price, % relative 80
7.0
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
2.6
Embodied Energy, MJ/kg 190
36
Embodied Water, L/kg 290
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26 to 29
24
Strength to Weight: Bending, points 22 to 24
22
Thermal Diffusivity, mm2/s 2.9
7.0
Thermal Shock Resistance, points 22 to 25
23

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.040
Carbon (C), % 0 to 0.1
0.080 to 0.12
Chromium (Cr), % 20 to 23
8.0 to 9.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 0 to 5.0
87.1 to 90.5
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 8.0 to 10
0.85 to 1.1
Nickel (Ni), % 58 to 68.9
0 to 0.4
Niobium (Nb), % 3.2 to 4.2
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.4
0
Vanadium (V), % 0
0.18 to 0.25