Nickel 625 vs. EN 1.6580 Steel
Nickel 625 belongs to the nickel alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is nickel 625 and the bottom bar is EN 1.6580 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 33 to 34 | |
11 to 19 |
Fatigue Strength, MPa | 240 to 320 | |
310 to 610 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 79 | |
73 |
Shear Strength, MPa | 530 to 600 | |
450 to 700 |
Tensile Strength: Ultimate (UTS), MPa | 790 to 910 | |
720 to 1170 |
Tensile Strength: Yield (Proof), MPa | 320 to 450 | |
460 to 990 |
Thermal Properties
Latent Heat of Fusion, J/g | 330 | |
250 |
Maximum Temperature: Mechanical, °C | 980 | |
450 |
Melting Completion (Liquidus), °C | 1350 | |
1460 |
Melting Onset (Solidus), °C | 1290 | |
1420 |
Specific Heat Capacity, J/kg-K | 440 | |
470 |
Thermal Conductivity, W/m-K | 11 | |
40 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.3 | |
7.8 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 1.4 | |
8.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 80 | |
4.3 |
Density, g/cm3 | 8.6 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 14 | |
1.8 |
Embodied Energy, MJ/kg | 190 | |
23 |
Embodied Water, L/kg | 290 | |
59 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 220 to 250 | |
120 to 130 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 260 to 490 | |
560 to 2590 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 26 to 29 | |
26 to 41 |
Strength to Weight: Bending, points | 22 to 24 | |
23 to 31 |
Thermal Diffusivity, mm2/s | 2.9 | |
11 |
Thermal Shock Resistance, points | 22 to 25 | |
21 to 34 |
Alloy Composition
Aluminum (Al), % | 0 to 0.4 | |
0 |
Carbon (C), % | 0 to 0.1 | |
0.26 to 0.34 |
Chromium (Cr), % | 20 to 23 | |
1.8 to 2.2 |
Cobalt (Co), % | 0 to 1.0 | |
0 |
Iron (Fe), % | 0 to 5.0 | |
93.7 to 95.5 |
Manganese (Mn), % | 0 to 0.5 | |
0.3 to 0.6 |
Molybdenum (Mo), % | 8.0 to 10 | |
0.3 to 0.5 |
Nickel (Ni), % | 58 to 68.9 | |
1.8 to 2.2 |
Niobium (Nb), % | 3.2 to 4.2 | |
0 |
Phosphorus (P), % | 0 to 0.015 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.035 |
Titanium (Ti), % | 0 to 0.4 | |
0 |