MakeItFrom.com
Menu (ESC)

Nickel 625 vs. EN AC-21200 Aluminum

Nickel 625 belongs to the nickel alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 625 and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 33 to 34
3.9 to 6.2
Fatigue Strength, MPa 240 to 320
110 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 790 to 910
410 to 440
Tensile Strength: Yield (Proof), MPa 320 to 450
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1350
660
Melting Onset (Solidus), °C 1290
550
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 80
10
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 14
8.0
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
500 to 930
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 26 to 29
38 to 40
Strength to Weight: Bending, points 22 to 24
41 to 43
Thermal Diffusivity, mm2/s 2.9
49
Thermal Shock Resistance, points 22 to 25
18 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.4
93.3 to 95.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 0 to 5.0
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0 to 0.5
0.2 to 0.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 0.050
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.4
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1