MakeItFrom.com
Menu (ESC)

Nickel 625 vs. EN AC-43300 Aluminum

Nickel 625 belongs to the nickel alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 625 and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 33 to 34
3.4 to 6.7
Fatigue Strength, MPa 240 to 320
76 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 790 to 910
280 to 290
Tensile Strength: Yield (Proof), MPa 320 to 450
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 330
540
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1350
600
Melting Onset (Solidus), °C 1290
590
Specific Heat Capacity, J/kg-K 440
910
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.5
Embodied Carbon, kg CO2/kg material 14
7.9
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 26 to 29
31 to 32
Strength to Weight: Bending, points 22 to 24
37 to 38
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 22 to 25
13 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.4
88.9 to 90.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 5.0
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
9.0 to 10
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0 to 0.15
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1