MakeItFrom.com
Menu (ESC)

Nickel 625 vs. CC330G Bronze

Nickel 625 belongs to the nickel alloys classification, while CC330G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33 to 34
20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 790 to 910
530
Tensile Strength: Yield (Proof), MPa 320 to 450
190

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1350
1050
Melting Onset (Solidus), °C 1290
1000
Specific Heat Capacity, J/kg-K 440
430
Thermal Conductivity, W/m-K 11
62
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
15

Otherwise Unclassified Properties

Base Metal Price, % relative 80
29
Density, g/cm3 8.6
8.4
Embodied Carbon, kg CO2/kg material 14
3.2
Embodied Energy, MJ/kg 190
52
Embodied Water, L/kg 290
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
82
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
170
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 26 to 29
18
Strength to Weight: Bending, points 22 to 24
17
Thermal Diffusivity, mm2/s 2.9
17
Thermal Shock Resistance, points 22 to 25
19

Alloy Composition

Aluminum (Al), % 0 to 0.4
8.0 to 10.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
87 to 92
Iron (Fe), % 0 to 5.0
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 1.0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.5