MakeItFrom.com
Menu (ESC)

Nickel 625 vs. CC762S Brass

Nickel 625 belongs to the nickel alloys classification, while CC762S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is CC762S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33 to 34
7.3
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 790 to 910
840
Tensile Strength: Yield (Proof), MPa 320 to 450
540

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1350
920
Melting Onset (Solidus), °C 1290
870
Specific Heat Capacity, J/kg-K 440
420
Thermal Conductivity, W/m-K 11
51
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
32

Otherwise Unclassified Properties

Base Metal Price, % relative 80
24
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 14
3.1
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 290
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
54
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
1290
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 26 to 29
29
Strength to Weight: Bending, points 22 to 24
25
Thermal Diffusivity, mm2/s 2.9
15
Thermal Shock Resistance, points 22 to 25
27

Alloy Composition

Aluminum (Al), % 0 to 0.4
3.0 to 7.0
Antimony (Sb), % 0
0 to 0.030
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
57 to 67
Iron (Fe), % 0 to 5.0
1.5 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.5
2.5 to 5.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 3.0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
13.4 to 36