MakeItFrom.com
Menu (ESC)

Nickel 625 vs. Grade 19 Titanium

Nickel 625 belongs to the nickel alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 33 to 34
5.6 to 17
Fatigue Strength, MPa 240 to 320
550 to 620
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
47
Shear Strength, MPa 530 to 600
550 to 750
Tensile Strength: Ultimate (UTS), MPa 790 to 910
890 to 1300
Tensile Strength: Yield (Proof), MPa 320 to 450
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
370
Melting Completion (Liquidus), °C 1350
1660
Melting Onset (Solidus), °C 1290
1600
Specific Heat Capacity, J/kg-K 440
520
Thermal Conductivity, W/m-K 11
6.2
Thermal Expansion, µm/m-K 13
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 80
45
Density, g/cm3 8.6
5.0
Embodied Carbon, kg CO2/kg material 14
47
Embodied Energy, MJ/kg 190
760
Embodied Water, L/kg 290
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
3040 to 5530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
33
Strength to Weight: Axial, points 26 to 29
49 to 72
Strength to Weight: Bending, points 22 to 24
41 to 53
Thermal Diffusivity, mm2/s 2.9
2.4
Thermal Shock Resistance, points 22 to 25
57 to 83

Alloy Composition

Aluminum (Al), % 0 to 0.4
3.0 to 4.0
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 20 to 23
5.5 to 6.5
Cobalt (Co), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 5.0
0 to 0.3
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
3.5 to 4.5
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants