MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C19700 Copper

Nickel 625 belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 33 to 34
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 530 to 600
240 to 300
Tensile Strength: Ultimate (UTS), MPa 790 to 910
400 to 530
Tensile Strength: Yield (Proof), MPa 320 to 450
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1350
1090
Melting Onset (Solidus), °C 1290
1040
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
250
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
2.6
Embodied Energy, MJ/kg 190
41
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
460 to 1160
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 26 to 29
12 to 16
Strength to Weight: Bending, points 22 to 24
14 to 16
Thermal Diffusivity, mm2/s 2.9
73
Thermal Shock Resistance, points 22 to 25
14 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 0 to 5.0
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 0.5
0 to 0.050
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 0.050
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0.1 to 0.4
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2