MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C31600 Bronze

Nickel 625 belongs to the nickel alloys classification, while C31600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33 to 34
6.7 to 28
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
42
Shear Strength, MPa 530 to 600
170 to 270
Tensile Strength: Ultimate (UTS), MPa 790 to 910
270 to 460
Tensile Strength: Yield (Proof), MPa 320 to 450
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1350
1040
Melting Onset (Solidus), °C 1290
1010
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
33

Otherwise Unclassified Properties

Base Metal Price, % relative 80
29
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 190
43
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
28 to 690
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 26 to 29
8.5 to 15
Strength to Weight: Bending, points 22 to 24
11 to 15
Thermal Diffusivity, mm2/s 2.9
42
Thermal Shock Resistance, points 22 to 25
9.4 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 0 to 5.0
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0.7 to 1.2
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0.040 to 0.1
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
5.2 to 10.5
Residuals, % 0
0 to 0.4