MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C41300 Brass

Nickel 625 belongs to the nickel alloys classification, while C41300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33 to 34
2.0 to 44
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
42
Shear Strength, MPa 530 to 600
230 to 370
Tensile Strength: Ultimate (UTS), MPa 790 to 910
300 to 630
Tensile Strength: Yield (Proof), MPa 320 to 450
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1350
1040
Melting Onset (Solidus), °C 1290
1010
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
31

Otherwise Unclassified Properties

Base Metal Price, % relative 80
29
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 190
44
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
69 to 1440
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 26 to 29
9.6 to 20
Strength to Weight: Bending, points 22 to 24
11 to 19
Thermal Diffusivity, mm2/s 2.9
40
Thermal Shock Resistance, points 22 to 25
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 0 to 5.0
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5