Nickel 625 vs. C46400 Brass
Nickel 625 belongs to the nickel alloys classification, while C46400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is nickel 625 and the bottom bar is C46400 brass.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
100 |
Elongation at Break, % | 33 to 34 | |
17 to 40 |
Poisson's Ratio | 0.29 | |
0.31 |
Shear Modulus, GPa | 79 | |
40 |
Shear Strength, MPa | 530 to 600 | |
270 to 310 |
Tensile Strength: Ultimate (UTS), MPa | 790 to 910 | |
400 to 500 |
Tensile Strength: Yield (Proof), MPa | 320 to 450 | |
160 to 320 |
Thermal Properties
Latent Heat of Fusion, J/g | 330 | |
170 |
Maximum Temperature: Mechanical, °C | 980 | |
120 |
Melting Completion (Liquidus), °C | 1350 | |
900 |
Melting Onset (Solidus), °C | 1290 | |
890 |
Specific Heat Capacity, J/kg-K | 440 | |
380 |
Thermal Conductivity, W/m-K | 11 | |
120 |
Thermal Expansion, µm/m-K | 13 | |
21 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.3 | |
26 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 1.4 | |
29 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 80 | |
23 |
Density, g/cm3 | 8.6 | |
8.0 |
Embodied Carbon, kg CO2/kg material | 14 | |
2.7 |
Embodied Energy, MJ/kg | 190 | |
47 |
Embodied Water, L/kg | 290 | |
330 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 220 to 250 | |
76 to 140 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 260 to 490 | |
120 to 500 |
Stiffness to Weight: Axial, points | 13 | |
7.2 |
Stiffness to Weight: Bending, points | 23 | |
20 |
Strength to Weight: Axial, points | 26 to 29 | |
14 to 17 |
Strength to Weight: Bending, points | 22 to 24 | |
15 to 17 |
Thermal Diffusivity, mm2/s | 2.9 | |
38 |
Thermal Shock Resistance, points | 22 to 25 | |
13 to 16 |
Alloy Composition
Aluminum (Al), % | 0 to 0.4 | |
0 |
Carbon (C), % | 0 to 0.1 | |
0 |
Chromium (Cr), % | 20 to 23 | |
0 |
Cobalt (Co), % | 0 to 1.0 | |
0 |
Copper (Cu), % | 0 | |
59 to 62 |
Iron (Fe), % | 0 to 5.0 | |
0 to 0.1 |
Lead (Pb), % | 0 | |
0 to 0.2 |
Manganese (Mn), % | 0 to 0.5 | |
0 |
Molybdenum (Mo), % | 8.0 to 10 | |
0 |
Nickel (Ni), % | 58 to 68.9 | |
0 |
Niobium (Nb), % | 3.2 to 4.2 | |
0 |
Phosphorus (P), % | 0 to 0.015 | |
0 |
Silicon (Si), % | 0 to 0.5 | |
0 |
Sulfur (S), % | 0 to 0.015 | |
0 |
Tin (Sn), % | 0 | |
0.5 to 1.0 |
Titanium (Ti), % | 0 to 0.4 | |
0 |
Zinc (Zn), % | 0 | |
36.3 to 40.5 |
Residuals, % | 0 | |
0 to 0.4 |