MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C48600 Brass

Nickel 625 belongs to the nickel alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 33 to 34
20 to 25
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 79
39
Shear Strength, MPa 530 to 600
180 to 230
Tensile Strength: Ultimate (UTS), MPa 790 to 910
280 to 360
Tensile Strength: Yield (Proof), MPa 320 to 450
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1350
900
Melting Onset (Solidus), °C 1290
890
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
28

Otherwise Unclassified Properties

Base Metal Price, % relative 80
24
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 14
2.8
Embodied Energy, MJ/kg 190
47
Embodied Water, L/kg 290
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 26 to 29
9.5 to 12
Strength to Weight: Bending, points 22 to 24
12 to 14
Thermal Diffusivity, mm2/s 2.9
36
Thermal Shock Resistance, points 22 to 25
9.3 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 0 to 5.0
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.3 to 1.5
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4