MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C51100 Bronze

Nickel 625 belongs to the nickel alloys classification, while C51100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33 to 34
2.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
42
Shear Strength, MPa 530 to 600
230 to 410
Tensile Strength: Ultimate (UTS), MPa 790 to 910
330 to 720
Tensile Strength: Yield (Proof), MPa 320 to 450
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1350
1060
Melting Onset (Solidus), °C 1290
970
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
84
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
20

Otherwise Unclassified Properties

Base Metal Price, % relative 80
32
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
3.0
Embodied Energy, MJ/kg 190
48
Embodied Water, L/kg 290
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
38 to 2170
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 26 to 29
10 to 22
Strength to Weight: Bending, points 22 to 24
12 to 20
Thermal Diffusivity, mm2/s 2.9
25
Thermal Shock Resistance, points 22 to 25
12 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
93.8 to 96.5
Iron (Fe), % 0 to 5.0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0.030 to 0.35
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
3.5 to 4.9
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5