MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C61900 Bronze

Nickel 625 belongs to the nickel alloys classification, while C61900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C61900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33 to 34
21 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 530 to 600
370 to 410
Tensile Strength: Ultimate (UTS), MPa 790 to 910
570 to 650
Tensile Strength: Yield (Proof), MPa 320 to 450
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1350
1050
Melting Onset (Solidus), °C 1290
1040
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 11
79
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 80
28
Density, g/cm3 8.6
8.3
Embodied Carbon, kg CO2/kg material 14
3.1
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 290
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
230 to 430
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 26 to 29
19 to 22
Strength to Weight: Bending, points 22 to 24
18 to 20
Thermal Diffusivity, mm2/s 2.9
22
Thermal Shock Resistance, points 22 to 25
20 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.4
8.5 to 10
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
83.6 to 88.5
Iron (Fe), % 0 to 5.0
3.0 to 4.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.6
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5