MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C68100 Brass

Nickel 625 belongs to the nickel alloys classification, while C68100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C68100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 33 to 34
29
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 790 to 910
380
Tensile Strength: Yield (Proof), MPa 320 to 450
140

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1350
890
Melting Onset (Solidus), °C 1290
870
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
98
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
24
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
27

Otherwise Unclassified Properties

Base Metal Price, % relative 80
23
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 14
2.8
Embodied Energy, MJ/kg 190
47
Embodied Water, L/kg 290
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
86
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
94
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 26 to 29
13
Strength to Weight: Bending, points 22 to 24
15
Thermal Diffusivity, mm2/s 2.9
32
Thermal Shock Resistance, points 22 to 25
13

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.010
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
56 to 60
Iron (Fe), % 0 to 5.0
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0.010 to 0.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0.040 to 0.15
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.75 to 1.1
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
36.4 to 43
Residuals, % 0
0 to 0.5