MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C71520 Copper-nickel

Nickel 625 belongs to the nickel alloys classification, while C71520 copper-nickel belongs to the copper alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 33 to 34
10 to 45
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
51
Shear Strength, MPa 530 to 600
250 to 340
Tensile Strength: Ultimate (UTS), MPa 790 to 910
370 to 570
Tensile Strength: Yield (Proof), MPa 320 to 450
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 980
260
Melting Completion (Liquidus), °C 1350
1170
Melting Onset (Solidus), °C 1290
1120
Specific Heat Capacity, J/kg-K 440
400
Thermal Conductivity, W/m-K 11
32
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 80
40
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
5.0
Embodied Energy, MJ/kg 190
73
Embodied Water, L/kg 290
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
67 to 680
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 26 to 29
12 to 18
Strength to Weight: Bending, points 22 to 24
13 to 17
Thermal Diffusivity, mm2/s 2.9
8.9
Thermal Shock Resistance, points 22 to 25
12 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
65 to 71.6
Iron (Fe), % 0 to 5.0
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
28 to 33
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0 to 0.2
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5