MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C94500 Bronze

Nickel 625 belongs to the nickel alloys classification, while C94500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C94500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
92
Elongation at Break, % 33 to 34
12
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 79
34
Tensile Strength: Ultimate (UTS), MPa 790 to 910
170
Tensile Strength: Yield (Proof), MPa 320 to 450
83

Thermal Properties

Latent Heat of Fusion, J/g 330
160
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1350
940
Melting Onset (Solidus), °C 1290
800
Specific Heat Capacity, J/kg-K 440
330
Thermal Conductivity, W/m-K 11
52
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 8.6
9.3
Embodied Carbon, kg CO2/kg material 14
3.2
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 290
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
17
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
37
Stiffness to Weight: Axial, points 13
5.5
Stiffness to Weight: Bending, points 23
16
Strength to Weight: Axial, points 26 to 29
5.2
Strength to Weight: Bending, points 22 to 24
7.4
Thermal Diffusivity, mm2/s 2.9
17
Thermal Shock Resistance, points 22 to 25
6.7

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
66.7 to 78
Iron (Fe), % 0 to 5.0
0 to 0.15
Lead (Pb), % 0
16 to 22
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 1.0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 1.2