MakeItFrom.com
Menu (ESC)

Nickel 625 vs. S21904 Stainless Steel

Nickel 625 belongs to the nickel alloys classification, while S21904 stainless steel belongs to the iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is S21904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 33 to 34
17 to 51
Fatigue Strength, MPa 240 to 320
380 to 550
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
78
Shear Strength, MPa 530 to 600
510 to 620
Tensile Strength: Ultimate (UTS), MPa 790 to 910
700 to 1000
Tensile Strength: Yield (Proof), MPa 320 to 450
390 to 910

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 980
980
Melting Completion (Liquidus), °C 1350
1400
Melting Onset (Solidus), °C 1290
1350
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 11
14
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 80
15
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 14
3.0
Embodied Energy, MJ/kg 190
43
Embodied Water, L/kg 290
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
160 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
380 to 2070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26 to 29
25 to 36
Strength to Weight: Bending, points 22 to 24
23 to 29
Thermal Diffusivity, mm2/s 2.9
3.8
Thermal Shock Resistance, points 22 to 25
15 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0 to 0.040
Chromium (Cr), % 20 to 23
19 to 21.5
Cobalt (Co), % 0 to 1.0
0
Iron (Fe), % 0 to 5.0
59.5 to 67.4
Manganese (Mn), % 0 to 0.5
8.0 to 10
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
5.5 to 7.5
Niobium (Nb), % 3.2 to 4.2
0
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0 to 0.015
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.4
0

Comparable Variants