MakeItFrom.com
Menu (ESC)

Nickel 625 vs. S66286 Stainless Steel

Nickel 625 belongs to the nickel alloys classification, while S66286 stainless steel belongs to the iron alloys. They have 45% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 33 to 34
17 to 40
Fatigue Strength, MPa 240 to 320
240 to 410
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 79
75
Shear Strength, MPa 530 to 600
420 to 630
Tensile Strength: Ultimate (UTS), MPa 790 to 910
620 to 1020
Tensile Strength: Yield (Proof), MPa 320 to 450
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 980
920
Melting Completion (Liquidus), °C 1350
1430
Melting Onset (Solidus), °C 1290
1370
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 80
26
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 14
6.0
Embodied Energy, MJ/kg 190
87
Embodied Water, L/kg 290
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
190 to 1150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26 to 29
22 to 36
Strength to Weight: Bending, points 22 to 24
20 to 28
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 22 to 25
13 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 20 to 23
13.5 to 16
Cobalt (Co), % 0 to 1.0
0
Iron (Fe), % 0 to 5.0
49.1 to 59.5
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 8.0 to 10
1.0 to 1.5
Nickel (Ni), % 58 to 68.9
24 to 27
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.4
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5

Comparable Variants