MakeItFrom.com
Menu (ESC)

Nickel 685 vs. 2018 Aluminum

Nickel 685 belongs to the nickel alloys classification, while 2018 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 685 and the bottom bar is 2018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 350
120
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 17
9.6
Fatigue Strength, MPa 470
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 770
270
Tensile Strength: Ultimate (UTS), MPa 1250
420
Tensile Strength: Yield (Proof), MPa 850
310

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1000
220
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
510
Specific Heat Capacity, J/kg-K 460
870
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.4
3.1
Embodied Carbon, kg CO2/kg material 10
8.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 340
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
37
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 42
38
Strength to Weight: Bending, points 31
41
Thermal Diffusivity, mm2/s 3.3
57
Thermal Shock Resistance, points 37
19

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
89.7 to 94.4
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 18 to 21
0 to 0.1
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.5
3.5 to 4.5
Iron (Fe), % 0 to 2.0
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 49.6 to 62.5
1.7 to 2.3
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 2.8 to 3.3
0
Zinc (Zn), % 0.020 to 0.12
0 to 0.25
Residuals, % 0
0 to 0.15