MakeItFrom.com
Menu (ESC)

Nickel 685 vs. 6262A Aluminum

Nickel 685 belongs to the nickel alloys classification, while 6262A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 685 and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 17
4.5 to 11
Fatigue Strength, MPa 470
94 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 770
190 to 240
Tensile Strength: Ultimate (UTS), MPa 1250
310 to 410
Tensile Strength: Yield (Proof), MPa 850
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
580
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 13
170
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 10
8.4
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 340
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
540 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 42
31 to 41
Strength to Weight: Bending, points 31
36 to 44
Thermal Diffusivity, mm2/s 3.3
67
Thermal Shock Resistance, points 37
14 to 18

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 18 to 21
0.040 to 0.14
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.5
0.15 to 0.4
Iron (Fe), % 0 to 2.0
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 49.6 to 62.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 2.8 to 3.3
0 to 0.1
Zinc (Zn), % 0.020 to 0.12
0 to 0.25
Residuals, % 0
0 to 0.15