MakeItFrom.com
Menu (ESC)

Nickel 685 vs. A535.0 Aluminum

Nickel 685 belongs to the nickel alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 685 and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 17
9.0
Fatigue Strength, MPa 470
95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 1250
250
Tensile Strength: Yield (Proof), MPa 850
120

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1380
620
Melting Onset (Solidus), °C 1330
550
Specific Heat Capacity, J/kg-K 460
910
Thermal Conductivity, W/m-K 13
100
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 10
9.3
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 340
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
19
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 42
26
Strength to Weight: Bending, points 31
33
Thermal Diffusivity, mm2/s 3.3
42
Thermal Shock Resistance, points 37
11

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
91.4 to 93.4
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 0 to 2.0
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 49.6 to 62.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 2.8 to 3.3
0 to 0.25
Zinc (Zn), % 0.020 to 0.12
0
Residuals, % 0
0 to 0.15