MakeItFrom.com
Menu (ESC)

Nickel 685 vs. EN 1.4310 Stainless Steel

Nickel 685 belongs to the nickel alloys classification, while EN 1.4310 stainless steel belongs to the iron alloys. They have a modest 28% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 685 and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 350
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
14 to 45
Fatigue Strength, MPa 470
240 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 770
510 to 550
Tensile Strength: Ultimate (UTS), MPa 1250
730 to 900
Tensile Strength: Yield (Proof), MPa 850
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 1000
910
Melting Completion (Liquidus), °C 1380
1420
Melting Onset (Solidus), °C 1330
1380
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 75
14
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 10
2.9
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 340
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
170 to 830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 42
26 to 32
Strength to Weight: Bending, points 31
23 to 27
Thermal Diffusivity, mm2/s 3.3
4.0
Thermal Shock Resistance, points 37
15 to 18

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.1
0.050 to 0.15
Chromium (Cr), % 18 to 21
16 to 19
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 2.0
66.4 to 78
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 3.5 to 5.0
0 to 0.8
Nickel (Ni), % 49.6 to 62.5
6.0 to 9.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 2.8 to 3.3
0
Zinc (Zn), % 0.020 to 0.12
0