MakeItFrom.com
Menu (ESC)

Nickel 685 vs. EN AC-48000 Aluminum

Nickel 685 belongs to the nickel alloys classification, while EN AC-48000 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 685 and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 350
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 17
1.0
Fatigue Strength, MPa 470
85 to 86
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 1250
220 to 310
Tensile Strength: Yield (Proof), MPa 850
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 1000
190
Melting Completion (Liquidus), °C 1380
600
Melting Onset (Solidus), °C 1330
560
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
7.9
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 340
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
300 to 510
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 42
23 to 33
Strength to Weight: Bending, points 31
31 to 39
Thermal Diffusivity, mm2/s 3.3
54
Thermal Shock Resistance, points 37
10 to 15

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
80.4 to 87.2
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.5
0.8 to 1.5
Iron (Fe), % 0 to 2.0
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 49.6 to 62.5
0.7 to 1.3
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 2.8 to 3.3
0 to 0.25
Zinc (Zn), % 0.020 to 0.12
0 to 0.35
Residuals, % 0
0 to 0.15