MakeItFrom.com
Menu (ESC)

Nickel 685 vs. C42200 Brass

Nickel 685 belongs to the nickel alloys classification, while C42200 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 685 and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
2.0 to 46
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 770
210 to 350
Tensile Strength: Ultimate (UTS), MPa 1250
300 to 610
Tensile Strength: Yield (Proof), MPa 850
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1380
1040
Melting Onset (Solidus), °C 1330
1020
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 75
29
Density, g/cm3 8.4
8.6
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 340
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
49 to 1460
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 42
9.5 to 19
Strength to Weight: Bending, points 31
11 to 18
Thermal Diffusivity, mm2/s 3.3
39
Thermal Shock Resistance, points 37
10 to 21

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.5
86 to 89
Iron (Fe), % 0 to 2.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 49.6 to 62.5
0
Phosphorus (P), % 0 to 0.030
0 to 0.35
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.8 to 1.4
Titanium (Ti), % 2.8 to 3.3
0
Zinc (Zn), % 0.020 to 0.12
8.7 to 13.2
Residuals, % 0
0 to 0.5