MakeItFrom.com
Menu (ESC)

Nickel 686 vs. ASTM A356 Grade 8

Nickel 686 belongs to the nickel alloys classification, while ASTM A356 grade 8 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is ASTM A356 grade 8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 51
21
Fatigue Strength, MPa 410
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 780
630
Tensile Strength: Yield (Proof), MPa 350
390

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Maximum Temperature: Mechanical, °C 980
440
Melting Completion (Liquidus), °C 1380
1470
Melting Onset (Solidus), °C 1340
1430
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 9.8
38
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 70
3.5
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 12
2.0
Embodied Energy, MJ/kg 170
26
Embodied Water, L/kg 300
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
110
Resilience: Unit (Modulus of Resilience), kJ/m3 280
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 2.6
10
Thermal Shock Resistance, points 21
18

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.2
Chromium (Cr), % 19 to 23
1.0 to 1.5
Iron (Fe), % 0 to 5.0
95.4 to 97.4
Manganese (Mn), % 0 to 0.75
0.5 to 0.9
Molybdenum (Mo), % 15 to 17
0.9 to 1.2
Nickel (Ni), % 49.5 to 63
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.080
0.2 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0
Vanadium (V), % 0
0.050 to 0.15