MakeItFrom.com
Menu (ESC)

Nickel 686 vs. ASTM A387 Grade 21 Steel

Nickel 686 belongs to the nickel alloys classification, while ASTM A387 grade 21 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is ASTM A387 grade 21 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 51
21
Fatigue Strength, MPa 410
160 to 250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 560
310 to 370
Tensile Strength: Ultimate (UTS), MPa 780
500 to 590
Tensile Strength: Yield (Proof), MPa 350
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Maximum Temperature: Mechanical, °C 980
480
Melting Completion (Liquidus), °C 1380
1470
Melting Onset (Solidus), °C 1340
1430
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 9.8
41
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 70
4.1
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 12
1.8
Embodied Energy, MJ/kg 170
23
Embodied Water, L/kg 300
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 280
140 to 320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 24
18 to 21
Strength to Weight: Bending, points 21
18 to 20
Thermal Diffusivity, mm2/s 2.6
11
Thermal Shock Resistance, points 21
14 to 17

Alloy Composition

Carbon (C), % 0 to 0.010
0.050 to 0.15
Chromium (Cr), % 19 to 23
2.8 to 3.3
Iron (Fe), % 0 to 5.0
94.4 to 96
Manganese (Mn), % 0 to 0.75
0.3 to 0.6
Molybdenum (Mo), % 15 to 17
0.9 to 1.1
Nickel (Ni), % 49.5 to 63
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.080
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.025
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0