MakeItFrom.com
Menu (ESC)

Nickel 686 vs. C355.0 Aluminum

Nickel 686 belongs to the nickel alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 686 and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 51
2.7 to 3.8
Fatigue Strength, MPa 410
76 to 84
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 780
290 to 310
Tensile Strength: Yield (Proof), MPa 350
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1380
620
Melting Onset (Solidus), °C 1340
570
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 9.8
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
39
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 12
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 300
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 280
290 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 24
30 to 32
Strength to Weight: Bending, points 21
36 to 37
Thermal Diffusivity, mm2/s 2.6
60
Thermal Shock Resistance, points 21
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 0 to 5.0
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.75
0 to 0.1
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 49.5 to 63
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.080
4.5 to 5.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.020 to 0.25
0 to 0.2
Tungsten (W), % 3.0 to 4.4
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15