MakeItFrom.com
Menu (ESC)

Nickel 686 vs. EN 1.1133 Steel

Nickel 686 belongs to the nickel alloys classification, while EN 1.1133 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 51
19 to 24
Fatigue Strength, MPa 410
230 to 310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 560
370 to 380
Tensile Strength: Ultimate (UTS), MPa 780
580 to 620
Tensile Strength: Yield (Proof), MPa 350
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 980
400
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 9.8
49
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 70
2.1
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 12
1.5
Embodied Energy, MJ/kg 170
19
Embodied Water, L/kg 300
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 280
270 to 550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 24
21 to 22
Strength to Weight: Bending, points 21
20 to 21
Thermal Diffusivity, mm2/s 2.6
13
Thermal Shock Resistance, points 21
18 to 19

Alloy Composition

Carbon (C), % 0 to 0.010
0.17 to 0.23
Chromium (Cr), % 19 to 23
0 to 0.4
Iron (Fe), % 0 to 5.0
96.9 to 98.8
Manganese (Mn), % 0 to 0.75
1.0 to 1.5
Molybdenum (Mo), % 15 to 17
0 to 0.1
Nickel (Ni), % 49.5 to 63
0 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.080
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.035
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0