MakeItFrom.com
Menu (ESC)

Nickel 686 vs. EN 1.4578 Stainless Steel

Nickel 686 belongs to the nickel alloys classification, while EN 1.4578 stainless steel belongs to the iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is EN 1.4578 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 51
51
Fatigue Strength, MPa 410
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 560
400
Tensile Strength: Ultimate (UTS), MPa 780
550
Tensile Strength: Yield (Proof), MPa 350
200

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 980
930
Melting Completion (Liquidus), °C 1380
1430
Melting Onset (Solidus), °C 1340
1390
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 9.8
14
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 70
19
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 12
3.7
Embodied Energy, MJ/kg 170
51
Embodied Water, L/kg 300
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
220
Resilience: Unit (Modulus of Resilience), kJ/m3 280
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 2.6
3.9
Thermal Shock Resistance, points 21
12

Alloy Composition

Carbon (C), % 0 to 0.010
0 to 0.040
Chromium (Cr), % 19 to 23
16.5 to 17.5
Copper (Cu), % 0
3.0 to 3.5
Iron (Fe), % 0 to 5.0
62.3 to 68.5
Manganese (Mn), % 0 to 0.75
0 to 2.0
Molybdenum (Mo), % 15 to 17
2.0 to 2.5
Nickel (Ni), % 49.5 to 63
10 to 11
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0